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Goals and Outline

• Goal: anticipate spectrum of detector
sensitivities when LISA becomes science
operational

• Outline
– Resonant Acoustic Detectors
– Interferometers
– Pulsar Timing Arrays
– Conclusions
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Resonant Acoustic Detectors

• How they work
• Where they’re going
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Detecting Gravitational Waves:
“Bar” Detectors

Auriga “Bar” Detector, Italy
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Bar Detectors Worldwide

• ALLEGRO (USA)
• Nautilus (Italy)
• Explorer (Italy)
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Principal technical challenge: in
situ low-noise amplifiers

• On-resonance mechanical
response larger than off-
resonance response

• Ratio signal to (amplifier)
noise larger for on resonance
gravitational wave power
than for off resonance power

• Leads to effective narrowing
of response

• Current best sensitivity
– ~10-22 in 1 Hz bandwidth

near 900 Hz
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Spherical Detectors

• Why spherical? “Omni”:
– Equal sensitivity to waves

from any incident direction
– Equal sensitivity to either

wave polarization
– Ability to discern incident

wave polarization, direction

Kamerlingh Onnes Laboratory,
Leiden University
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“Dual” spheres for increased
bandwidth

• Sphere inside a shell
– Different resonant

frequencies for inner
sphere, outer shell

• Incident wave with
characteristic frequency
between resonant
frequencies
– Inner sphere, outer shell

respond out of phase
– Increased sensitivity in

band between resonant
frequencies

• Cf. Cerdonio et al., PRL 87
(2001) 082003



24 April 2003 Astrophysics of Gravitational Wave
Sources

9

Interferometric Detectors

• How they work
• Where they’re going
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Detecting Gravitational Waves:
Laser Interferometry

t

–
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LIGO: The Laser Interferometer
Gravitational-wave Observatory

• United States effort funded by the National Science Foundation
• Two sites

– Hanford, Washington & Livingston, Louisiana
• Construction from 1994-2000
• Commissioning from 2000 - 2002
• Operations: now!
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Laser Interferometer Detectors
Worldwide

• Virgo: Italy & France (3 Km arms)

• GEO: Germany & UK (600m arms)

• TAMA: Japan (300m arms)



24 April 2003 Astrophysics of Gravitational Wave
Sources

13

What limits LIGO’s sensitivity?

• Initial LIGO detectors:
– Different f, different limit
– < ~50Hz : seismic noise
– 50 - 200Hz : thermal

noise
– > 200Hz  : “shot” noise

• Facility limits
– Gravity gradients
– Stray light
– Residual gas
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• Seismic isolation

• Thermal noise
mitigation; high
power optics

• High power
lasers

• Tuning ifo
response

40kg

Building a better interferometer:
Advanced LIGO
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High frequencies: improving
photon counting statistics

• More photons, better statistics
– Higher laser power
– Greater light storage time in cavity

• Higher laser power
– Initial LIGO: 6 W input to IFO
– Advanced LIGO: 125 W input to IFO

• Greater light storage time
– Initial LIGO: 0.84ms light storage time; 30 KW on test

masses
– Advanced LIGO: 5.0ms light storage time; 800 KW on test

masses
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Thermal noise contributions

• Suspensions:
– kT energy in taut suspension wire violin modes

• Test masses:
– Normal modes: kT energy in mirror modes
– Thermoelastic: Temperature fluctuations and
thermal expansion coefficient
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Thermal noise mitigation:
suspensions

• Noise proportional to mechanical losses:
reduce losses
– Initial LIGO: mirrors rest on cylindrical wires
– Advanced LIGO: mirrors bonded to fused silica
ribbons

• Coupling proportional to ratio wire/mirror
mass
– Initial LIGO: 11 Kg mass
– Advanced LIGO: 40 Kg mass
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Thermal noise mitigation:
test masses

• Material properties problem
– Normal modes:

• Increase Young’s modulus:
less motion for same thermal
energy

– Thermoelastic:
• Decrease coefficient thermal

expansion: less motion for
same thermal fluctuations

– Goal: single crystal sapphire
• Laser spot diameter, profile

– Fluctuations averaged over
effective spot area

– Increase area, reduce effective
fluctuation

– Initial LIGO: 25cm
– Advanced LIGO: 35cm
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Seismic isolation
• Initial LIGO

– Passive isolation: lossy
springs

• Advanced LIGO
– Active isolation

• External hydraulic
actuators

• Suspension platform fine
control

– Multiple pendulum
suspension
• Mirrors at bottom of chain
• Orientation forces applied

at reaction masses
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LIGO

Advanced
LIGO

S
eism

ic

Suspension

therm
al

Test mass thermal

Quantum

• Radiation pressure:
photons bouncing off
mirrors
– High power: high light

pressure
• Mitigation: increased

mirror mass
– Smaller acceleration

for same force
– Initial LIGO: 11Kg
– Advanced LIGO: 40Kg

Sensitivity improvements:
high power optics
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Sensitivity improvements:
high power optics

• More laser power,
greater mirror heating
– Differential heating

changes mirror shape:
“thermal lensing”

• Mitigation: bring face
to constant temp.
– Heat optic radiatively

with suspended heating
element
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Tuning the detector response

• Undisturbed interferometer
operates on dark fringe
– Response to gravitational

waves is light at output port
• Introduce partially reflecting

mirror at output port

cavity end mirror

Interferometer
arm (4km long)

cavity end
mirror

Interferometer
arm (4km long)

photodetector

cavity input
mirrorslaser

Signal recycling
mirror

– Make resonant cavity with
rest of interferometer

– Resonance enhances power at
output port for excitation at
resonant frequency

– Higher power: lower shot
noise

• Mitigate shot noise in narrow
band
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Advanced LIGO
sensitivity goals

Advanced LIGO

Initial LIGO

Advanced LIGO

Seism
ic

Suspension

therm
al

Test massthermal

Quantum

LIGO
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LISA: Laser Interferometer
Space Antenna

• Three spacecraft in
equilateral triangle
configuration
– 5x106 Km arm length
– Solar orbit 20 deg behind

Earth
• Constellation tracks

changes in separation
on

Courtesy Rutherford
Appleton Laboratory, UK
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LISA: critical technologies

• Space laser interferometry
– Track fringes to establish separation changes with
10pm accuracy

• Inertial sensing
– Sense deviations from inertial (geodesic)
trajectories

• Micro-newton thrusters
– Mitigate against deviations from inertial
trajectories owing to, e.g., acceleration noise from
solar wind
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LISA technology tests

• ESA LISA Test Package (LTP), NASA
Disturbance Reduction System (DRS)
– Technology validation of space interferometry &
inertial sensors, thrust technologies for drag-free
flight

– Flies on ESA SMART-2 August 2006
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Conclusions, or What does this
all mean?

• Ground-based “ifos” on-
track for
– Stochastic background

sensitivity Ωh2<10-9@ 100Hz
– NS/NS binary inspiral

sensitivity to ~400 Mpc
– 2x10 Msol BH/BH binary

inspiral sensitivity to z~0.5
– Pulsars: ε < 10-6 @ 100 Hz,

10-7 @ 300 Hz, 10-8 @ 1 KHz
in 1 yr

• Resonant acoustic detectors
– Could be competitive in

~100Hz bandwidth near 1 KHz
• LISA

– Stochastic background
sensitivity Ωh2<10-10 @ 0.01Hz

– Sensitive to galactic binaries
with orbital f>10-3.5 Hz

– Massive (> 103 Msol) black hole
binary inspiral anyhwere

– Massive (104.5 Msol < M < 107
Msol) black hole coalescence
anywhere

Gravitational Wave Astronomy!


